We provide posterior contraction rates for constrained deep Gaussian processes in non-parametric density estimation and classication. The constraints are in the form of bounds on the values and on the derivatives of the Gaussian processes in the layers of the composition structure. The contraction rates are rst given in a general framework, in terms of a new concentration function that we introduce and that takes the constraints into account. Then, the general framework is applied to integrated Brownian motions, Riemann-Liouville processes, and Mat{\'e}rn processes and to standard smoothness classes of functions. In each of these examples, we can recover known minimax rates.
翻译:在非参数密度估计和经典中,我们为受限制的深高斯进程提供后台收缩率,限制的形式是组成结构层中高斯进程的价值和衍生物的界限,收缩率在总体框架中给出,即我们引入并顾及制约因素的新集中功能。然后,总框架适用于综合的布朗动议、里曼-利奥维尔进程和马特-欧维尔进程,以及标准平稳的功能类别。在其中的每一个例子中,我们可以回收已知的微速率。