The dramatic outbreak of the coronavirus disease 2019 (COVID-19) pandemics and its ongoing progression boosted the scientific community's interest in epidemic modeling and forecasting. The SIR (Susceptible-Infected-Removed) model is a simple mathematical model of epidemic outbreaks, yet for decades it evaded the efforts of the community to derive an explicit solution. The present work demonstrates that this is a non-trivial task. Notably, it is proven that the explicit solution of the model requires the introduction of a new transcendental special function, related to the Wright's Omega function. The present manuscript reports new analytical results and numerical routines suitable for parametric estimation of the SIR model. The manuscript introduces iterative algorithms approximating the incidence variable, which allows for estimation of the model parameters from the numbers of observed cases. The numerical approach is exemplified with data from the European Centre for Disease Prevention and Control (ECDC) for several European countries in the period Jan 2020 -- Jun 2020.
翻译:2019年科罗纳病毒(COVID-19)流行病的急剧爆发及其不断进展,提高了科学界对流行病模型和预测的兴趣。SIR(可感知感染-逆转)模型是流行病爆发的简单数学模型,但数十年来,它回避了社区寻求明确解决办法的努力。目前的工作表明,这是一项非三重性的任务。值得注意的是,事实证明,该模型的明确解决方案需要引入与赖特的奥米加功能有关的新的超常特殊功能。本稿报告了新的分析结果和适合SIR模型参数估计的数字例程。手稿介绍了与事件变量相近的迭代算法,从而得以根据观察到的案件数量估算模型参数。数字方法以欧洲预防和控制疾病中心(ECDC)在2020年1月至2020年6月期间为几个欧洲国家提供的数据为范例。