In this paper, we propose a nonparametric Bayesian approach for Lindsey and penalized Gaussian mixtures methods. We compare these methods with the Dirichlet process mixture model. Our approach is a Bayesian nonparametric method not based solely on a parametric family of probability distributions. Thus, the fitted models are more robust to model misspecification. Also, with the Bayesian approach, we have the entire posterior distribution of our parameter of interest; it can be summarized through credible intervals, mean, median, standard deviation, quantiles, etc. The Lindsey, penalized Gaussian mixtures, and Dirichlet process mixture methods are reviewed. The estimations are performed via Markov chain Monte Carlo (MCMC) methods. The penalized Gaussian mixtures method is implemented via Hamiltonian Monte Carlo (HMC). We show that under certain regularity conditions, and as n increases, the posterior distribution of the weights converges to a Normal distribution. Simulation results and data analysis are reported.
翻译:在本文中,我们建议对林赛采用非对称的巴伊西亚方法,并对高斯混合物采用惩罚性方法。我们将这些方法与狄里赫莱工艺混合物模型进行比较。我们的方法是巴伊西亚的非对称方法,不完全基于概率分布的参数组别。因此,安装的模型更能模拟错误的特性。此外,在巴伊西亚方法中,我们拥有我们感兴趣的参数的整个后方分布;它可以通过可信的间隔、平均值、中位、标准偏差、量化等进行总结。林西、惩罚性高斯混合物和迪里赫莱工艺混合物组别方法得到审查。估计是通过马尔科夫链-蒙特卡洛(Monte Carlo)方法进行的。受罚的高斯混合物方法通过汉密尔顿·蒙特卡洛(HMCC)得到实施。我们表明,在某些定期条件下,随着增加,重量的后方分布会趋于正常分布。报告模拟结果和数据分析。