In this paper, we propose a nonparametric Bayesian approach for Lindsey and penalized Gaussian mixtures methods. We compare these methods with the Dirichlet process mixture model. Our approach is a Bayesian nonparametric method not based solely on a parametric family of probability distributions. Thus, the fitted models are more robust to model misspecification. Also, with the Bayesian approach, we have the entire posterior distribution of our parameter of interest; it can be summarized through credible intervals, mean, median, standard deviation, quantiles, etc. The Lindsey, penalized Gaussian mixtures, and Dirichlet process mixture methods are reviewed. The estimations are performed via Markov chain Monte Carlo (MCMC) methods. The penalized Gaussian mixtures method is implemented via Hamiltonian Monte Carlo (HMC). We show that under certain regularity conditions, and as n increases, the posterior distribution of the weights converges to a Normal distribution. Simulation results and data analysis are reported.


翻译:在本文中,我们建议对林赛采用非对称的巴伊西亚方法,并对高斯混合物采用惩罚性方法。我们将这些方法与狄里赫莱工艺混合物模型进行比较。我们的方法是巴伊西亚的非对称方法,不完全基于概率分布的参数组别。因此,安装的模型更能模拟错误的特性。此外,在巴伊西亚方法中,我们拥有我们感兴趣的参数的整个后方分布;它可以通过可信的间隔、平均值、中位、标准偏差、量化等进行总结。林西、惩罚性高斯混合物和迪里赫莱工艺混合物组别方法得到审查。估计是通过马尔科夫链-蒙特卡洛(Monte Carlo)方法进行的。受罚的高斯混合物方法通过汉密尔顿·蒙特卡洛(HMCC)得到实施。我们表明,在某些定期条件下,随着增加,重量的后方分布会趋于正常分布。报告模拟结果和数据分析。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
12+阅读 · 2019年12月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月15日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
12+阅读 · 2019年12月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员