The effective reproduction number $R_t$ measures an infectious disease's transmissibility as the number of secondary infections in one reproduction time in a population having both susceptible and non-susceptible hosts. Current approaches do not quantify the uncertainty correctly in estimating $R_t$, as expected by the observed variability in contagion patterns. We elaborate on the Bayesian estimation of $R_t$ by improving on the Poisson sampling model of Cori et al. (2013). By adding an autoregressive latent process, we build a Dynamic Linear Model on the log of observed $R_t$s, resulting in a filtering type Bayesian inference. We use a conjugate analysis, and all calculations are explicit. Results show an improved uncertainty quantification on the estimation of $R_t$'s, with a reliable method that could safely be used by non-experts and within other forecasting systems. We illustrate our approach with recent data from the current COVID19 epidemic in Mexico.
翻译:有效复制号为$t美元,用以衡量传染病的传染性传染,即具有易感和不可感知主机的人口在一次生殖时间内的二次感染数量。目前的办法没有按照所观察到的传染模式变异性预期,正确量化在估算美元t$方面的不确定性。我们通过改进Cori等人的Poisson采样模型,详细阐述了巴伊西亚对美元的估计值。通过增加自动递增潜伏过程,我们在观察到的R$t的日志上建立了一个动态线性模型,从而得出一种过滤型贝叶斯人的推断。我们使用同源分析,并且所有计算都是明确的。结果显示在估算$Rt$方面提高了不确定性的量化,非专家和其他预报系统可以安全地使用可靠的方法。我们用墨西哥当前COVID19流行病的最新数据来说明我们的方法。