We consider a joint multiple-antenna radar-communications system in a co-existence scenario. Contrary to conventional applications, wherein at least the radar waveform and communications channel are known or estimated \textit{a priori}, we investigate the case when the channels and transmit signals of both systems are unknown. In radar applications, this problem arises in multistatic or passive systems, where transmit signal is not known. Similarly, highly dynamic vehicular or mobile communications may render prior estimates of wireless channel unhelpful. In particular, the radar signal reflected-off multiple targets is overlaid with the multi-carrier communications signal. In order to extract the unknown continuous-valued target parameters (range, Doppler velocity, and direction-of-arrival) and communications messages, we formulate the problem as a sparse dual-blind deconvolution and solve it using atomic norm minimization. Numerical experiments validate our proposed approach and show that precise estimation of continuous-valued channel parameters, radar waveform, and communications messages is possible up to scaling ambiguities.
翻译:我们认为,在一个共存的情景下,存在一个联合的多ANTAND雷达通信系统。与通常的应用相反,至少雷达波形和通信频道为人所知或估计为\textit{a sidi},我们调查两个系统频道和信号传输未知的情况;在雷达应用中,这一问题出现在多静态或被动系统中,传输信号未知;同样,高度动态的车辆或移动通信可能使对无线频道的事先估计无助。特别是,雷达信号反射的多个目标与多载体通信信号覆盖在一起。为了提取未知的持续价值目标参数(范围、多普勒速度和抵达方向)和通信信息,我们将此问题描述为稀有的双向分解,并利用原子规范最小化来解决。数字实验证实了我们提出的方法,并表明准确估计持续价值的频道参数、雷达波变和通信信息有可能达到模糊度。