In this paper, we focus on the quantum communication complexity of functions of the form $f \circ G = f(G(X_1, Y_1), \ldots, G(X_n, Y_n))$ where $f: \{0, 1\}^n \to \{0, 1\}$ is a symmetric function, $G: \{0, 1\}^j \times \{0, 1\}^k \to \{0, 1\}$ is any function and Alice (resp. Bob) is given $(X_i)_{i \leq n}$ (resp. $(Y_i)_{i \leq n}$). Recently, Chakraborty et al. [STACS 2022] showed that the quantum communication complexity of $f \circ G$ is $O(Q(f)\mathrm{QCC}_\mathrm{E}(G))$ when the parties are allowed to use shared entanglement, where $Q(f)$ is the query complexity of $f$ and $\mathrm{QCC}_\mathrm{E}(G)$ is the exact communication complexity of $G$. In this paper, we first show that the same statement holds \emph{without shared entanglement}, which generalizes their result. Based on the improved result, we next show tight upper bounds on $f \circ \mathrm{AND}_2$ for any symmetric function $f$ (where $\textrm{AND}_2 : \{0, 1\} \times \{0, 1\} \to \{0, 1\}$ denotes the 2-bit AND function) in both models: with shared entanglement and without shared entanglement. This matches the well-known lower bound by Razborov~[Izv. Math. 67(1) 145, 2003] when shared entanglement is allowed and improves Razborov's bound when shared entanglement is not allowed.
翻译:在本文中, 我们集中关注 $f {circ G = f (G(X_ 1, Y_ 1),\ldots, G(X_n, Y_n) 美元) 函数的量子通信复杂性, 其中$f =0, 1 ⁇ n\to =0, 1 ⁇ j\ times =0, 1 ⁇ k\ t @ 0, 1 ⁇ 美元是任何函数, Alice (resp. Bob) 给 $(X_ i) i\leq n} (resp. matters) $(Y_ matermax) {i\leq n$(美元) 。 最近, Chakraborty 和 al. [STACS 2022] 显示, $( $\ irc G) 的量级通信复杂性是$(Q), 当允许缔约方使用 =nqon( f) comendment ($(f) sharet) sharealment = $0, 和 $(美元) commodeal modeal modeal modeal) modeal modealment = $(美元)。