This work develops a provably accurate fully-decentralized fast and communication-efficient alternating projected gradient descent (Dec-AltProjGD) algorithm for solving the following low-rank (LR) matrix recovery problem: recover an LR matrix from independent columnwise linear projections (LR column-wise Compressive Sensing). To our best knowledge, this work is the first attempt to develop a provably correct decentralized algorithm for any problem involving use of an alternating projected GD algorithm and one in which the constraint set to be projected to is a non-convex set.
翻译:这项工作开发了一种准确、完全分散的快速和通信高效的交替梯度预测梯度下降(Dec-AltProjGD)算法(Dec-AltProjGD),以解决以下低级别(LR)矩阵回收问题:从独立的单列线性预测(LR)中恢复一个LR矩阵(LR 列中压缩遥感 ) 。 据我们所知,这项工作是首次尝试为涉及使用交替预测GD算法的任何问题开发一个可以准确无误的分散算法(Dec-AltProjGD),并预测其中的限制因素是非凝固装置。