This paper discovers that the neural network with lower decision boundary (DB) variability has better generalizability. Two new notions, algorithm DB variability and $(\epsilon, \eta)$-data DB variability, are proposed to measure the decision boundary variability from the algorithm and data perspectives. Extensive experiments show significant negative correlations between the decision boundary variability and the generalizability. From the theoretical view, two lower bounds based on algorithm DB variability are proposed and do not explicitly depend on the sample size. We also prove an upper bound of order $\mathcal{O}\left(\frac{1}{\sqrt{m}}+\epsilon+\eta\log\frac{1}{\eta}\right)$ based on data DB variability. The bound is convenient to estimate without the requirement of labels, and does not explicitly depend on the network size which is usually prohibitively large in deep learning.
翻译:本文发现, 具有较低决定边界( DB) 变量的神经网络比较普通。 根据数据 DB 变量, 提出两个新概念, 算法 DB 变量和 $( epsilon,\eta) $- data DB 变量, 以测量决定边界变量。 广泛的实验显示了决定边界变量与通用性之间的显著负相关性。 从理论观点看, 提出了两个基于算法 DB 变量的较低范围, 并不明确取决于样本大小 。 我们还证明基于数据 DB 变量, 有两个新概念, 算法 DB 变量和 $(\ epsilon,\\\\\ \ tqrt{ m ⁇ \ eta\ log\ frac{ 1\ \ \ neta\ right) 的上限 。 。 在没有标签要求的情况下, 界限是方便地估算的, 并且并不明确取决于 深层学习中通常过于庞大的网络大小 。