In this work, we tackle the task of estimating the 6D pose of an object from point cloud data. While recent learning-based approaches to addressing this task have shown great success on synthetic datasets, we have observed them to fail in the presence of real-world data. We thus analyze the causes of these failures, which we trace back to the difference between the feature distributions of the source and target point clouds, and the sensitivity of the widely-used SVD-based loss function to the range of rotation between the two point clouds. We address the first challenge by introducing a new normalization strategy, Match Normalization, and the second via the use of a loss function based on the negative log likelihood of point correspondences. Our two contributions are general and can be applied to many existing learning-based 3D object registration frameworks, which we illustrate by implementing them in two of them, DCP and IDAM. Our experiments on the real-scene TUD-L, LINEMOD and Occluded-LINEMOD datasets evidence the benefits of our strategies. They allow for the first time learning-based 3D object registration methods to achieve meaningful results on real-world data. We therefore expect them to be key to the future development of point cloud registration methods.
翻译:在这项工作中,我们的任务是从点云数据中估算一个对象的 6D 形状。虽然最近处理这项任务的基于学习的方法在合成数据集方面显示出巨大的成功,但我们观察到,在存在真实世界数据的情况下,这些结果都失败了。因此,我们分析了这些失败的原因,我们追溯到源和目标点云的特征分布与广泛使用的 SVD 损失函数对两个点云之间轮换范围的敏感性之间的差别。我们通过采用新的正常化战略,即匹配正常化,以及利用基于点对等的负日志可能性的丢失函数,来应对第一个挑战。我们的两个贡献是一般性的,可以应用于现有的许多基于学习的 3D 对象登记框架,我们通过在其中两个框架,即DCP 和 IDAM 中实施这些框架来说明这些失败的原因。我们对真实的 TUD-L、 LINEMOD 和 Oclobed- LINEMO 数据集的实验证明了我们战略的好处。我们第一次学习基于 3D 对象的登记方法可以实现未来关键世界数据登记方法的有意义的结果。