The acquisition of advanced models relies on large datasets in many fields, which makes storing datasets and training models expensive. As a solution, dataset distillation can synthesize a small dataset such that models trained on it achieve high performance on par with the original large dataset. The recently proposed dataset distillation method by matching network parameters has been proved effective for several datasets. However, a few parameters in the distillation process are difficult to match, which harms the distillation performance. Based on this observation, this paper proposes a new method to solve the problem using parameter pruning. The proposed method can synthesize more robust distilled datasets and improve the distillation performance by pruning difficult-to-match parameters in the distillation process. Experimental results on three datasets show that the proposed method outperformed other SOTA dataset distillation methods.


翻译:先进模型的获取取决于许多领域的大型数据集,这使得存储数据集和培训模型的费用昂贵。作为一个解决方案,数据集蒸馏可以合成一个小数据集,使经过培训的模型在与原始大型数据集相当的程度上能取得高性能。最近提出的通过匹配网络参数进行数据集蒸馏的方法已证明对若干数据集有效。然而,蒸馏过程中的一些参数难以匹配,从而损害蒸馏性能。根据这一观察,本文件提出一种新方法,用参数修剪来解决问题。拟议方法可以通过在蒸馏过程中修剪难到匹配的参数,合成更强的蒸馏数据集,改进蒸馏性能。三个数据集的实验结果表明,拟议方法比其他SOTA数据蒸馏方法要好。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年11月4日
Arxiv
0+阅读 · 2022年11月3日
Arxiv
21+阅读 · 2021年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员