Automated machine learning (AutoML) usually involves several crucial components, such as Data Augmentation (DA) policy, Hyper-Parameter Optimization (HPO), and Neural Architecture Search (NAS). Although many strategies have been developed for automating these components in separation, joint optimization of these components remains challenging due to the largely increased search dimension and the variant input types of each component. In parallel to this, the common practice of searching for the optimal architecture first and then retraining it before deployment in NAS often suffers from low performance correlation between the searching and retraining stages. An end-to-end solution that integrates the AutoML components and returns a ready-to-use model at the end of the search is desirable. In view of these, we propose DHA, which achieves joint optimization of Data augmentation policy, Hyper-parameter and Architecture. Specifically, end-to-end NAS is achieved in a differentiable manner by optimizing a compressed lower-dimensional feature space, while DA policy and HPO are regarded as dynamic schedulers, which adapt themselves to the update of network parameters and network architecture at the same time. Experiments show that DHA achieves state-of-the-art (SOTA) results on various datasets and search spaces. To the best of our knowledge, we are the first to efficiently and jointly optimize DA policy, NAS, and HPO in an end-to-end manner without retraining.


翻译:自动机器学习(Automal)通常涉及几个关键组成部分,如数据增强(DA)政策、超光谱优化(HPO)和神经结构搜索(NAS)等数据增强(Automal)政策。虽然已经制定了许多战略,将这些组成部分分离成自动化,但是由于搜索层面和每个组成部分的变式输入类型大大增加,这些组成部分的联合优化仍然具有挑战性。与此相平行,首先寻找最佳架构然后在NAS部署之前再再培训这一共同做法往往因搜索和再培训阶段之间的性能相关性低而受到影响。在搜索结束时,采用将自动MLE组件整合并返回一个随时使用的模型的端对端解决方案是可取的。有鉴于此,我们建议DHA, 实现数据增强政策、超光度和结构的联合优化。具体地说,端对端到端NAS的实现不同方式,优化的地地地表空间,而DA政策和HO被视为动态的调度器,在搜索结束时根据网络参数和网络结构的更新情况进行调整。实验显示,我们的最佳搜索方式是在不同时进行最佳搜索。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年12月17日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员