In collaborative privacy preserving planning (CPPP), a group of agents jointly creates a plan to achieve a set of goals while preserving each others' privacy. During planning, agents often reveal the private dependencies between their public actions to other agents, that is, which public action facilitates the preconditions of another public action. Previous work in CPPP does not limit the disclosure of such dependencies. In this paper, we explicitly limit the amount of disclosed dependencies, allowing agents to publish only a part of their private dependencies. We investigate different strategies for deciding which dependencies to publish, and how they affect the ability to find solutions. We evaluate the ability of two solvers -- distribute forward search and centralized planning based on a single-agent projection -- to produce plans under this constraint. Experiments over standard CPPP domains show that the proposed dependency-sharing strategies enable generating plans while sharing only a small fraction of all private dependencies.
翻译:在合作保护隐私规划(CPPP)中,一组代理人共同制定计划,以实现一系列目标,同时保护彼此的隐私。在规划期间,代理人往往向其他代理人透露其公共行动之间的私人依赖性,即公共行动有利于另一项公共行动的先决条件。以前在CPP中的工作并不限制披露这种依赖性。在本文件中,我们明确限制披露的依赖性的数量,只允许代理人公布其私人依赖性的一部分。我们调查不同战略,以确定发布哪些依赖性,以及它们如何影响找到解决办法的能力。我们评估了两个解决者 -- -- 根据单一代理人的预测分配前期搜索和集中规划 -- -- 在这种限制下制定计划的能力。对标准CPP域的实验表明,拟议的依赖性共享战略能够产生计划,同时只分享所有私人依赖性的一小部分。