In this article, we propose a novel model, PrivGenDB, for securely storing and efficiently conducting different queries on genomic data outsourced to an honest-but-curious cloud server. To instantiate PrivGenDB, we use searchable symmetric encryption (SSE) to ensure confidentiality while providing the required functionality. To the best of our knowledge, PrivGenDB construction is the first SSE-based approach ensuring the confidentiality of shared Single Nucleotide Polymorphism (SNP)-phenotype data through encryption while making the computation/query process efficient and scalable for biomedical research and care. It supports a variety of query types on genomic data, including count queries, Boolean queries, and k'-out-of-k match queries. Finally, the PrivGenDB model not only can handle the dataset containing both genotype and phenotype, but it also supports storing and managing other metadata like gender and ethnicity privately. Computer evaluations on a dataset with 5,000 records and 1,000 SNPs demonstrate that a count/Boolean query and a k'-out-of-k match query over 40 SNPs take approximately 4.3s and 86.4{\mu}s, respectively, that outperforms the existing schemes.


翻译:在本篇文章中,我们提出了一个新颖的模型,即PriivGenDB, 用于安全地储存和高效地对外包给诚实的但有说服力的云服务器的基因组数据进行不同的查询。对于PrivGenDB,我们使用可搜索的对称加密(SSE)来确保保密,同时提供所需的功能。根据我们的最佳知识,PriivGenDB的建设是第一个基于SSESE的方法,通过加密确保共享的单一核糖化多元形态(SNP)-phenod型数据的保密性,同时使计算/查询过程高效和可扩缩到生物医学研究和护理中。它支持关于基因组数据的各种查询类型,包括计数查询、Boolean查询和K'out-out-k匹配查询。最后,PriivGenDB模型不仅能够处理包含基因型和phone类型的数据数据集,而且还支持存储和管理诸如性别和种族私有等其他元数据。一个数据集的计算机评价,有5,000个记录和1,000个SNPSNPS的计算机评估显示,一个计数/Boolean查询和大约40个KMyS-moxS-rops。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【2020新书】使用Kubernetes开发高级平台,519页pdf
专知会员服务
67+阅读 · 2020年9月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2018年11月6日
Fair Clustering Using Antidote Data
Arxiv
0+阅读 · 2021年6月1日
Arxiv
0+阅读 · 2021年6月1日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2018年11月6日
Top
微信扫码咨询专知VIP会员