Recently privacy concerns of person re-identification (ReID) raise more and more attention and preserving the privacy of the pedestrian images used by ReID methods become essential. De-identification (DeID) methods alleviate privacy issues by removing the identity-related of the ReID data. However, most of the existing DeID methods tend to remove all personal identity-related information and compromise the usability of de-identified data on the ReID task. In this paper, we aim to develop a technique that can achieve a good trade-off between privacy protection and data usability for person ReID. To achieve this, we propose a novel de-identification method designed explicitly for person ReID, named Person Identify Shift (PIS). PIS removes the absolute identity in a pedestrian image while preserving the identity relationship between image pairs. By exploiting the interpolation property of variational auto-encoder, PIS shifts each pedestrian image from the current identity to another with a new identity, resulting in images still preserving the relative identities. Experimental results show that our method has a better trade-off between privacy-preserving and model performance than existing de-identification methods and can defend against human and model attacks for data privacy.
翻译:最近,个人再身份(ReID)的隐私问题引起了越来越多的关注,并保护了使用ReID方法的行人图像的隐私。使用身份(DeID)的方法通过删除ReID数据与身份有关的数据而减轻隐私问题。然而,现有的大多数 DeID方法往往删除所有与个人身份相关的信息,并损害 ReID任务上非身份数据的可用性。在本文件中,我们的目标是开发一种能够在隐私保护与数据可用性之间实现良好取舍的技术。为了实现这一点,我们提议了一种为个人再身份(称为人识别转移)明确设计的新的身份(DID)方法。PIS去除行人图像中的绝对身份,同时维护相配人的身份关系。通过利用变式自动编码器的内插特性,PIS将每个行人图像从当前身份转换为另一个新身份,从而保持了相对身份。实验结果表明,我们的方法在隐私保留和模型性能之间比现有的去身份识别方法更好的取舍,可以保护隐私和模型性攻击人的隐私。