Differential privacy is a widely accepted formal privacy definition that allows aggregate information about a dataset to be released while controlling privacy leakage for individuals whose records appear in the data. Due to the unavoidable tension between privacy and utility, there have been many works trying to relax the requirements of differential privacy to achieve greater utility. One class of relaxation, which is starting to gain support outside the privacy community is embodied by the definitions of individual differential privacy (IDP) and bootstrap differential privacy (BDP). The original version of differential privacy defines a set of neighboring database pairs and achieves its privacy guarantees by requiring that each pair of neighbors should be nearly indistinguishable to an attacker. The privacy definitions we study, however, aggressively reduce the set of neighboring pairs that are protected. Both IDP and BDP define a measure of "privacy loss" that satisfies formal privacy properties such as postprocessing invariance and composition, and achieve dramatically better utility than the traditional variants of differential privacy. However, there is a significant downside - we show that they allow a significant portion of the dataset to be reconstructed using algorithms that have arbitrarily low privacy loss under their privacy accounting rules. We demonstrate these attacks using the preferred mechanisms of these privacy definitions. In particular, we design a set of queries that, when protected by these mechanisms with high noise settings (i.e., with claims of very low privacy loss), yield more precise information about the dataset than if they were not protected at all.
翻译:不同隐私是一种得到广泛接受的正式隐私定义,允许在控制数据中记录的个人隐私泄露的同时公布关于数据集的汇总信息,同时控制数据中个人记录的隐私泄漏。由于隐私和实用性之间不可避免的紧张关系,许多工作都试图放松对不同隐私的要求,以取得更大的效用。 一类放松开始在隐私社区之外获得支持,体现在个人隐私差异(IDP)和靴套差异隐私的定义中。 差异隐私的原始版本界定了一组相邻数据库配对,并实现了隐私保障,要求每对邻居几乎无法与攻击者分辨。然而,我们研究的隐私定义极大地减少了受保护的邻里伴侣的组合。境内流离失所者和BDP都界定了一种满足正式隐私属性的“原始损失”的计量,如后处理和构成,并取得了比差异隐私传统变体更好的效用。 但是,有显著的下行 -- 我们显示,它们允许相当一部分的数据集被重建, 使用任意的低隐私损失的算法,而不是任意的低隐私损失, 在隐私会计规则下,我们用这些高的设定了高压机制来证明这些隐私损失。 我们用这些高压机制 展示了这些高的隐私损失。 我们用这些 使用这些高压机制 使用了这些高压 使用这些高的隐私损失机制, 我们用这些高压 使用这些 使用这些高的 使用这些高压的 测试 测试 使用这些高的 测试 使用这些 测试 使用这些 使用这些高的 以这些高的隐私损失机制, 我们这些 测试 以这些高的 测试机制 以这些高的 测试 测试要求。