Ciphertexts of an order-preserving encryption (OPE) scheme preserve the order of their corresponding plaintexts. However, OPEs are vulnerable to inference attacks that exploit this preserved order. At another end, differential privacy has become the de-facto standard for achieving data privacy. One of the most attractive properties of DP is that any post-processing (inferential) computation performed on the noisy output of a DP algorithm does not degrade its privacy guarantee. In this paper, we propose a novel differentially private order preserving encryption scheme, OP$\epsilon$. Under OP$\epsilon$, the leakage of order from the ciphertexts is differentially private. As a result, in the least, OP$\epsilon$ ensures a formal guarantee (specifically, a relaxed DP guarantee) even in the face of inference attacks. To the best of our knowledge, this is the first work to combine DP with a property-preserving encryption scheme. We demonstrate OP$\epsilon$'s practical utility in answering range queries via extensive empirical evaluation on four real-world datasets. For instance, OP$\epsilon$ misses only around $4$ in every $10K$ correct records on average for a dataset of size $\sim732K$ with an attribute of domain size $\sim18K$ and $\epsilon= 1$.
翻译:命令保存加密(OPE)办法的精密文本保留了相应的平文本的顺序。 但是, OPE 计划很容易受到利用这一保存的顺序的推断攻击。 在另一端, 差异隐私已经成为实现数据隐私的“ 事实标准 ” 。 DP 最有吸引力的特性之一是, DP 的超音速输出的处理后( 推断) 计算不会降低其隐私保障。 在本文中, 我们提出一个新的差别化的私人命令保存加密方案, OP$\ epsilon$ 。 在 OP$\ epslon 下, 密码文本的泄漏是不同的私人的。 结果是, 至少在 OP$\ epsilon$ 保证了正式的保证( 具体来说, 宽松的DP ), 即使面对不那么, 根据我们所知, 这是第一个将DP 和 财产保存加密方案相结合的工作。 我们展示 OP$\ epslon$ 在通过对4美元真实世界的美元的数据评估来回答范围查询时的实际效用。, OP\\\\\\ realal asionalal $2, asion a 10k laus laus laus lax a lax lax 10k prial lapal lap recreal lapal lapalp recre lapalp recrealpalp recre recrealpalpalpalpalsecre sre srep $ 2 。