Principal component analysis (PCA) is a most frequently used statistical tool in almost all branches of data science. However, like many other statistical tools, there is sometimes the risk of misuse or even abuse. In this paper, we highlight possible pitfalls in using the theoretical results of PCA based on the assumption of independent data when the data are time series. For the latter, we state with proof a central limit theorem of the eigenvalues and eigenvectors (loadings), give direct and bootstrap estimation of their asymptotic covariances, and assess their efficacy via simulation. Specifically, we pay attention to the proportion of variation, which decides the number of principal components (PCs), and the loadings, which help interpret the meaning of PCs. Our findings are that while the proportion of variation is quite robust to different dependence assumptions, the inference of PC loadings requires careful attention. We initiate and conclude our investigation with an empirical example on portfolio management, in which the PC loadings play a prominent role. It is given as a paradigm of correct usage of PCA for time series data.


翻译:主要组成部分分析(PCA)是几乎所有数据科学分支中最常用的统计工具,然而,与其他许多统计工具一样,有时也存在滥用或甚至滥用的风险。在本文件中,我们强调在数据为时间序列时,根据独立数据的假设,使用五氯苯的理论结果可能存在陷阱。对于数据为时间序列,我们用证据说明,在使用五氯苯的理论结果时可能存在陷阱。对于后者,我们用一个核心限度来说明电子元值和二次元体(装载)的理论,直接地和靴套地估计其无症状的变量,并通过模拟来评估其效力。具体地说,我们注意差异的比例,它决定了主要组成部分(PCs)的数量,而负荷则有助于解释PCs的含义。我们的调查结果是,虽然变化的比例与不同的依赖性假设相当强,但PC负荷的推论需要认真注意。我们开始并结束我们的调查,在组合管理方面有一个经验实例,其中PC负荷起着突出的作用。我们把它作为正确使用五氯苯的时间序列数据的一个范例。

0
下载
关闭预览

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
39+阅读 · 2020年9月6日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
0+阅读 · 2021年10月10日
Quantum Technology for Economists
Arxiv
0+阅读 · 2021年10月8日
Time Series Forecasting Using Manifold Learning
Arxiv
0+阅读 · 2021年10月8日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
39+阅读 · 2020年9月6日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员