We consider frequency-weighted damping optimization for vibrating systems described by a second-order differential equation. The goal is to determine viscosity values such that eigenvalues are kept away from certain undesirable areas on the imaginary axis. To this end, we present two complementary techniques. First, we propose new frameworks using nonsmooth constrained optimization problems, whose solutions both damp undesirable frequency bands and maintain stability of the system. These frameworks also allow us to weight which frequency bands are the most important to damp. Second, we also propose a fast new eigensolver for the structured quadratic eigenvalue problems that appear in such vibrating systems. In order to be efficient, our new eigensolver exploits special properties of diagonal-plus-rank-one complex symmetric matrices, which we leverage by showing how each quadratic eigenvalue problem can be transformed into a short sequence of such linear eigenvalue problems. The result is an eigensolver that is substantially faster than standard techniques. By combining this new solver with our new optimization frameworks, we obtain our overall algorithm for fast computation of optimal viscosities. The efficiency and performance of our new methods are verified and illustrated on several numerical examples.
翻译:我们考虑对二阶差异方程式描述的振动系统进行频率加权拉动优化。 目标是确定粘度值, 使电子元值远离想象轴的某些不受欢迎的区域。 为此, 我们提出两个互补技术。 首先, 我们提出使用非悬浮限制优化问题的新框架, 这些问题的解决方案既潮湿不受欢迎的频率波段, 也保持系统稳定性。 这些框架还允许我们使用最需要淹没的频率波段的权重。 其次, 我们还提议为在这种振动系统中出现的结构化二次二次双元值问题提供快速的新置换器。 为了提高效率, 我们的新双元软件开发了二等加一复杂对称矩阵的特殊性能。 我们通过展示每一种二次二次均匀值问题如何转化成一个短顺序, 以这种直线性电子值问题最为重要。 其结果比标准技术要快得多。 通过将这个新解决器与我们新的振动框架结合起来, 我们的新双振成的双振成像软件, 我们获得了我们快速计算最佳度和模拟模型的完整算法。