Cell-free (CF) massive multiple-input-multiple-output (mMIMO) deployments are usually investigated with half-duplex (HD) nodes and high-capacity fronthaul links. To leverage the possible gains in throughput and energy efficiency (EE) of full-duplex (FD) communications, we consider a FD CF mMIMO system with practical limited-capacity fronthaul links. We derive closed-form spectral efficiency (SE) lower bounds for this system with maximum-ratio transmission/maximum-ratio combining (MRT/MRC) processing and optimal uniform quantization. We then optimize the weighted sum EE (WSEE) via downlink and uplink power control by using a two-layered approach: the first layer formulates the optimization as a generalized convex program (GCP), while the second layer solves the optimization decentrally using alternating direction method of multipliers. We analytically show that the proposed two-layered formulation yields a Karush-Kuhn-Tucker point of the original WSEE optimization. We numerically show the influence of weights on the individual EE of the users, which demonstrates the utility of WSEE metric to incorporate heterogeneous EE requirements of users. We also show that with low fronthaul capacity, the system requires a higher number of fronthaul quantization bits to achieve high SE and WSEE. For high fronthaul capacity, higher number of bits, however, achieves high SE and a reduced WSEE.


翻译:无细胞(CF)大规模多投入-多输出(MMIMO)部署通常以半双倍(HD)节点和高容量前导线连接方式进行调查。为了利用全倍(FD)通信的吞吐量和能源效率(EE)的可能收益,我们认为FD CF MMIMO系统具有实际有限能力前导线连接,我们从这个系统获得的封闭式光谱效率(SE)较低界限,有最高纬度传输/最大纬度混合(MRT/MRC)处理和最佳统一化。然后,我们通过下链接和上传电源控制优化加权和EEEEE(WEE)(EESE)(E)(E)(EE)(EE)(E)(E)(E)(E)(E)(E)(EE)(E)(EE)(E)(EE)(E)(E)(E(EE)(E)(E)(E)(E)(E) (P) (P) (M) (M) (M) (M) (M) (M(M) (M) (M(M) (M) (M) (M) (M(M) (M) (M) (M) (M) (M) (M(M) (M(M(M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M(M(M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M(M(M) (M) (M) (M(M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (

0
下载
关闭预览

相关内容

【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
专知会员服务
22+阅读 · 2021年4月10日
专知会员服务
140+阅读 · 2021年3月17日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
注意力机制模型最新综述
专知会员服务
263+阅读 · 2019年10月20日
图像/视频去噪算法资源集锦
专知
18+阅读 · 2019年12月14日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关资讯
图像/视频去噪算法资源集锦
专知
18+阅读 · 2019年12月14日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员