Using a model of the environment and a value function, an agent can construct many estimates of a state's value, by unrolling the model for different lengths and bootstrapping with its value function. Our key insight is that one can treat this set of value estimates as a type of ensemble, which we call an \emph{implicit value ensemble} (IVE). Consequently, the discrepancy between these estimates can be used as a proxy for the agent's epistemic uncertainty; we term this signal \emph{model-value inconsistency} or \emph{self-inconsistency} for short. Unlike prior work which estimates uncertainty by training an ensemble of many models and/or value functions, this approach requires only the single model and value function which are already being learned in most model-based reinforcement learning algorithms. We provide empirical evidence in both tabular and function approximation settings from pixels that self-inconsistency is useful (i) as a signal for exploration, (ii) for acting safely under distribution shifts, and (iii) for robustifying value-based planning with a model.
翻译:使用环境和值函数模型, 代理商可以构建国家值的许多估计值, 方法是为不同长度的模型打开滚动, 并使用其值函数 。 我们的关键洞察力是, 可以将这组值估计值视为一种共合物, 我们称之为共合物。 因此, 这些估计值之间的差异可以用作该代理商特征不确定性的替代物; 我们将这个信号 \ emph{ 模型值不一致} 或\ emph{ 自我不一致} 称为短信息 。 与先前通过培训许多模型和/或价值函数来估计不确定性的工作不同, 这种方法仅需要单一的模型和价值函数, 已经在大多数基于模型的强化学习算法中学习过。 我们提供了列表和功能近似环境上的经验证据, 即自相矛盾( i) 作为勘探的信号, (ii) 在分销转移下安全地采取行动, 以及 (iii) 以模型为坚实的基于价值的规划。