Automatic art analysis has seen an ever-increasing interest from the pattern recognition and computer vision community. However, most of the current work is mainly based solely on digitized artwork images, sometimes supplemented with some metadata and textual comments. A knowledge graph that integrates a rich body of information about artworks, artists, painting schools, etc., in a unified structured framework can provide a valuable resource for more powerful information retrieval and knowledge discovery tools in the artistic domain. To this end, this paper presents ArtGraph: an artistic knowledge graph based on WikiArt and DBpedia. The graph, implemented in Neo4j, already provides knowledge discovery capabilities without having to train a learning system. In addition, the embeddings extracted from the graph are used to inject "contextual" knowledge into a deep learning model to improve the accuracy of artwork attribute prediction tasks.


翻译:自动艺术分析在模式识别和计算机视觉界引起了越来越多的兴趣,然而,目前大部分工作主要以数字化艺术作品图像为基础,有时还辅以一些元数据和文字评论。将大量艺术作品、艺术家、绘画学校等信息整合到一个统一的结构化框架中的知识图表可以为艺术领域更强有力的信息检索和知识发现工具提供宝贵的资源。为此,本文件展示了艺术Graph:一个基于维基艺术和DBpedia的艺术知识图。Neo4j的图已经提供了知识发现能力,而无需培训学习系统。此外,从图中提取的嵌入图还用于将“同源”知识引入一个深层次的学习模型,以提高艺术作品属性预测任务的准确性。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
172+阅读 · 2020年2月13日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
102+阅读 · 2020年3月4日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
172+阅读 · 2020年2月13日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员