Many sequential decision-making problems that are currently automated, such as those in manufacturing or recommender systems, operate in an environment where there is either little uncertainty, or zero risk of catastrophe. As companies and researchers attempt to deploy autonomous systems in less constrained environments, it is increasingly important that we endow sequential decision-making algorithms with the ability to reason about uncertainty and risk. In this thesis, we will address both planning and reinforcement learning (RL) approaches to sequential decision-making. In the planning setting, it is assumed that a model of the environment is provided, and a policy is optimised within that model. Reinforcement learning relies upon extensive random exploration, and therefore usually requires a simulator in which to perform training. In many real-world domains, it is impossible to construct a perfectly accurate model or simulator. Therefore, the performance of any policy is inevitably uncertain due to the incomplete knowledge about the environment. Furthermore, in stochastic domains, the outcome of any given run is also uncertain due to the inherent randomness of the environment. These two sources of uncertainty are usually classified as epistemic, and aleatoric uncertainty, respectively. The over-arching goal of this thesis is to contribute to developing algorithms that mitigate both sources of uncertainty in sequential decision-making problems. We make a number of contributions towards this goal, with a focus on model-based algorithms...


翻译:当前被自动化的许多顺序决策问题,例如制造业或推荐系统,操作在一个要么有很少不确定性,要么没有灾难风险的环境中。随着公司和研究人员试图在更不受限制的环境中部署自主系统,我们越来越需要为顺序决策算法赋予关于不确定性和风险的推理能力。在本论文中,我们将解决顺序决策制定和强化学习两种方法。在制定设置中,假定提供环境模型,并在该模型内优化策略。强化学习依赖于广泛的随机探索,因此通常需要一个模拟器来进行培训。在许多现实世界的域中,无法构建一个完全准确的模型或模拟器。因此,由于对环境的不完全知识,任何策略的表现不可避免地存在不确定性。此外,在随机域中,由于环境的固有随机性,任何给定运行的结果也是不确定的。这两个不确定性来源通常被归类为认识性和aleatoric不确定性。本论文的总体目标是为减轻顺序决策问题中这两个不确定性来源做出贡献。我们对此目标做出了一些贡献,重点是基于模型的算法...

2
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
12+阅读 · 2014年12月31日
国家自然科学基金
9+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
12+阅读 · 2023年1月19日
Arxiv
64+阅读 · 2022年4月13日
Arxiv
11+阅读 · 2021年12月8日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
12+阅读 · 2014年12月31日
国家自然科学基金
9+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员