Joint intent detection and slot filling is a key research topic in natural language understanding (NLU). Existing joint intent and slot filling systems analyze and compute features collectively for all slot types, and importantly, have no way to explain the slot filling model decisions. In this work, we propose a novel approach that: (i) learns to generate additional slot type specific features in order to improve accuracy and (ii) provides explanations for slot filling decisions for the first time in a joint NLU model. We perform an additional constrained supervision using a set of binary classifiers for the slot type specific feature learning, thus ensuring appropriate attention weights are learned in the process to explain slot filling decisions for utterances. Our model is inherently explainable and does not need any post-hoc processing. We evaluate our approach on two widely used datasets and show accuracy improvements. Moreover, a detailed analysis is also provided for the exclusive slot explainability.
翻译:联合意图探测和空缺填补是自然语言理解(NLU)中的一个关键研究课题。现有的联合意图和空缺填补系统对所有空缺类型进行集体分析和计算,重要的是,无法解释填补空缺的模型决定。在这项工作中,我们建议一种新颖的办法,即:(一) 学会产生额外的空缺类型具体特征,以提高准确性;(二) 在联合的NLU模型中首次解释填补空缺的决定。我们使用一组空档类型特定特点学习的二进制分类器进行额外的限制监督,从而确保在解释空缺填补决定的流程中了解适当的重视度。我们的模型本身是可以解释的,不需要任何热后处理。我们评估了两种广泛使用的数据集,并显示准确性。此外,我们还提供了关于唯一空缺解释性的详细分析。