Facial analysis systems have been deployed by large companies and critiqued by scholars and activists for the past decade. Many existing algorithmic audits examine the performance of these systems on later stage elements of facial analysis systems like facial recognition and age, emotion, or perceived gender prediction; however, a core component to these systems has been vastly understudied from a fairness perspective: face detection, sometimes called face localization. Since face detection is a pre-requisite step in facial analysis systems, the bias we observe in face detection will flow downstream to the other components like facial recognition and emotion prediction. Additionally, no prior work has focused on the robustness of these systems under various perturbations and corruptions, which leaves open the question of how various people are impacted by these phenomena. We present the first of its kind detailed benchmark of face detection systems, specifically examining the robustness to noise of commercial and academic models. We use both standard and recently released academic facial datasets to quantitatively analyze trends in face detection robustness. Across all the datasets and systems, we generally find that photos of individuals who are $\textit{masculine presenting}$, $\textit{older}$, of $\textit{darker skin type}$, or have $\textit{dim lighting}$ are more susceptible to errors than their counterparts in other identities.
翻译:过去十年来,大型公司部署并受到学者和活动家的批评。许多现有的算法审计检查了这些系统在面部分析系统后期要素,如面部识别和年龄、情感或感知性别预测方面的表现;然而,这些系统的核心组成部分从公平的角度进行了非常低的研究:面部检测,有时被称为脸部定位。由于面部检测是面部分析系统的一个必要步骤,我们观察到的面对面检测中的偏见将流向面部检测的其他组成部分,如面部识别和情绪预测。此外,以往没有一项工作侧重于这些系统在各种扰动和腐败情况下的稳健性,这使得不同人群如何受到这些现象影响的问题没有解决。我们提出了这些系统的第一个详细的脸部检测系统基准,具体审查了对商业和学术模型噪音的稳健性。我们使用标准以及最近发布的学术面部数据集对面部检测的稳健性趋势进行定量分析。在所有数据集和系统中,我们一般发现,在美元(masculine) $ (masculine) $ * 或(trigleg) pray} 其身份上比美元(美元) 美元) 或(tyliftal==美元) 美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/