As dialogue systems are becoming more and more interactional and social, also the accurate automatic speech recognition (ASR) of conversational speech is of increasing importance. This shifts the focus from short, spontaneous, task-oriented dialogues to the much higher complexity of casual face-to-face conversations. However, the collection and annotation of such conversations is a time-consuming process and data is sparse for this specific speaking style. This paper presents ASR experiments with read and conversational Austrian German as target. In order to deal with having only limited resources available for conversational German and, at the same time, with a large variation among speakers with respect to pronunciation characteristics, we improve a Kaldi-based ASR system by incorporating a (large) knowledge-based pronunciation lexicon, while exploring different data-based methods to restrict the number of pronunciation variants for each lexical entry. We achieve best WER of 0.4% on Austrian German read speech and best average WER of 48.5% on conversational speech. We find that by using our best pronunciation lexicon a similarly high performance can be achieved than by increasing the size of the data used for the language model by approx. 360% to 760%. Our findings indicate that for low-resource scenarios -- despite the general trend in speech technology towards using data-based methods only -- knowledge-based approaches are a successful, efficient method.


翻译:随着对话系统日益变得越来越互动和社交性,对谈话性演讲的准确自动语音识别(ASR)也越来越重要。这把重点从简短的、自发的、面向任务的对话转向更复杂的临时面对面对话。然而,这种对话的收集和批注是一个耗时的过程,对于这种具体的演讲风格来说,数据很少。本文介绍了ASR实验,以阅读和对话的奥地利德语作为目标。为了处理可用于对话用德语的资源有限的问题,同时,在发音特点方面,发言者之间差异很大,我们改进了Kaldi基于任务的ASR系统,纳入了(大)基于知识的读音词汇,同时探索了不同基于数据的方法来限制每个词汇条目的读音变体的数量。我们实现了奥地利德语读音为0.4%的最好WER,在谈话性演讲中,48.5%以平均WER为基础。我们发现,通过使用我们最好的读音法化语言的最好方法,只有类似的高性表现才能实现 -- -- 尽管我们使用的语音分析方法使用了60%的低比例方法,但是使用了我们所使用的语音分析方法中所使用的数据趋势也表明,只有使用了一种低比例的方法。

0
下载
关闭预览

相关内容

语音识别是计算机科学和计算语言学的一个跨学科子领域,它发展了一些方法和技术,使计算机可以将口语识别和翻译成文本。 它也被称为自动语音识别(ASR),计算机语音识别或语音转文本(STT)。它整合了计算机科学,语言学和计算机工程领域的知识和研究。
【ACM Multimedia2021-tutorial】可信赖多媒体分析
专知会员服务
17+阅读 · 2021年10月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
On the Fusion Strategies for Federated Decision Making
Arxiv
22+阅读 · 2021年12月19日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员