HybrIK relies on a combination of analytical inverse kinematics and deep learning to produce more accurate 3D pose estimation from 2D monocular images. HybrIK has three major components: (1) pretrained convolution backbone, (2) deconvolution to lift 3D pose from 2D convolution features, (3) analytical inverse kinematics pass correcting deep learning prediction using learned distribution of plausible twist and swing angles. In this paper we propose an enhancement of the 2D to 3D lifting module, replacing deconvolution with Transformer, resulting in accuracy and computational efficiency improvement relative to the original HybrIK method. We demonstrate our results on commonly used H36M, PW3D, COCO and HP3D datasets. Our code is publicly available https://github.com/boreshkinai/hybrik-transformer.
翻译:HybrIK依靠分析反动学和深层次学习相结合,从 2D 单体图像中得出更准确的 3D 3D 表示估计。 HybrIK 有三个主要组成部分:(1) 预演的革命骨干,(2) 变动以从 2D 变异特征中提升 3D 3D 表示,(3) 分析反动运动通过,利用合理扭曲和摇摆角度的学术分布来纠正深层次的学习预测。在本文中,我们建议将 2D 升至 3D 升动模块,用变异器取代变异器,从而比原HybrIK 方法更准确和计算效率提高。我们在常用的 H36M、PW3D、COCO和HP3D数据集中展示了我们的结果。我们的代码可以公开查阅 https://github.com/boreshkinai/hybrik-transtext。