The irregular domain and lack of ordering make it challenging to design deep neural networks for point cloud processing. This paper presents a novel framework named Point Cloud Transformer(PCT) for point cloud learning. PCT is based on Transformer, which achieves huge success in natural language processing and displays great potential in image processing. It is inherently permutation invariant for processing a sequence of points, making it well-suited for point cloud learning. To better capture local context within the point cloud, we enhance input embedding with the support of farthest point sampling and nearest neighbor search. Extensive experiments demonstrate that the PCT achieves the state-of-the-art performance on shape classification, part segmentation and normal estimation tasks.
翻译:非常规域和缺乏定序使得设计用于点云处理的深神经网络具有挑战性。 本文展示了一个名为点云变换器( PCT) 的新颖框架, 用于点云学习。 PCT 以变换器为基础, 它在自然语言处理中取得了巨大成功, 在图像处理中表现出巨大的潜力。 它本质上是处理点序列的变异性, 使它适合点云学习。 为了更好地捕捉点云内的地方环境, 我们通过最远的点取样和最近的邻里搜索来强化嵌入输入。 广泛的实验表明, PCT 在形状分类、 部分分解和正常估算任务方面达到了最先进的性能 。