For elastic wave scattering problems in unbounded anisotropic media, the existence of backward waves makes classic truncation techniques fail completely. This paper is concerned with an exact truncation technique for terminating backward elastic waves. We derive a closed form of elastrodynamic Green's tensor based on the method of Fourier transform and design two fundamental principles to ensure its physical correctness. We present a rigorous theory to completely classify the propagation behavior of Green's tensor, thus proving a conjecture posed by B\'ecache, Fauqueux and Joly (J. Comp. Phys., 188, 2003) regarding a necessary and suffcient condition of the non-existence of backward waves. Using Green's tensor, we propose a new radiation condition to characterize anistropic scattered waves at infinity. This leads to an exact transparent boundary condition (TBC) to truncate the unbounded domain, regardless the existence of backward waves or not. We develop a fast algorithm to evaluate Green's tensor and a high-accuracy scheme to discretize the TBC. A number of experiments are carried out to validate the correctness and efficiency of the new TBC.
翻译:对于在未受限制的厌食性媒体中的弹性波散射问题,后波的存在使得典型的脱节技术完全失效。本文件关注的是终止后向弹性波的精确脱节技术。我们根据Fourier变形法,产生了一种封闭形式的弹性动力绿色的阵列,并设计了确保其物理正确性的两项基本原则。我们提出了一个严格的理论,将绿粒子的传播行为完全分类,从而证明B\'ecache、Fauqueux和Joly(J.Comp.Phys., 188, 2003)就不出现后向波的必要和无穷状态提出的一种推测。我们利用Green的阵列,提出一种新的辐射条件,以在无限的无穷散波中定性。这导致一种完全透明的边界条件(TBC),以解析无界域,不管是否有后向波或非后向波。我们开发了一种快速算法来评估Green的温度和高准确性计划(J.Comp. Ph. Ph., 188, 2003),我们提出了一种新的辐射效率的实验数字,用来对TBC进行分解。