The mathematical formulation of sign-changing problems involves a linear second-order partial differential equation in the divergence form, where the coefficient can assume positive and negative values in different subdomains. These problems find their physical background in negative-index metamaterials, either as inclusions embedded into common materials as the matrix or vice versa. In this paper, we propose a numerical method based on the constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) specifically designed for sign-changing problems. The construction of auxiliary spaces in the original CEM-GMsFEM is tailored to accommodate the sign-changing setting. The numerical results demonstrate the effectiveness of the proposed method in handling sophisticated coefficient profiles and the robustness of coefficient contrast ratios. Under several technical assumptions and by applying the \texttt{T}-coercivity theory, we establish the inf-sup stability and provide an a priori error estimate for the proposed method.
翻译:暂无翻译