We propose a novel iterative method for optimally placing and orienting multiple cameras in a 3D scene. Sample applications include improving the accuracy of 3D reconstruction, maximizing the covered area for surveillance, or improving the coverage in multi-viewpoint pedestrian tracking. Our algorithm is based on a block-coordinate ascent combined with a surrogate function and an exclusion area technique. This allows to flexibly handle difficult objective functions that are often expensive and quantized or non-differentiable. The solver is globally convergent and easily parallelizable. We show how to accelerate the optimization by exploiting special properties of the objective function, such as symmetry. Additionally, we discuss the trade-off between non-optimal stationary points and the cost reduction when optimizing the viewpoints consecutively.
翻译:我们建议一种新型的迭接方法,用于在三维场景中最佳地放置和引导多摄像头。 样本应用包括提高三维重建的准确性,最大限度地扩大覆盖的监视区,或扩大多视点行人跟踪的覆盖面。 我们的算法基于一个块坐标的升降,加上一个代理功能和排除区域技术。 这样可以灵活地处理往往昂贵、量化或不可区分的困难客观功能。 解答器是全球趋同的, 很容易平行的。 我们展示了如何通过利用目标功能的特殊性( 如对称性)来加速优化优化。 此外, 在连续优化观点时, 我们讨论非最佳固定点与降低成本之间的平衡。