We propose a novel iterative method for optimally placing and orienting multiple cameras in a 3D scene. Sample applications include improving the accuracy of 3D reconstruction, maximizing the covered area for surveillance, or improving the coverage in multi-viewpoint pedestrian tracking. Our algorithm is based on a block-coordinate ascent combined with a surrogate function and an exclusion area technique. This allows to flexibly handle difficult objective functions that are often expensive and quantized or non-differentiable. The solver is globally convergent and easily parallelizable. We show how to accelerate the optimization by exploiting special properties of the objective function, such as symmetry. Additionally, we discuss the trade-off between non-optimal stationary points and the cost reduction when optimizing the viewpoints consecutively.


翻译:我们建议一种新型的迭接方法,用于在三维场景中最佳地放置和引导多摄像头。 样本应用包括提高三维重建的准确性,最大限度地扩大覆盖的监视区,或扩大多视点行人跟踪的覆盖面。 我们的算法基于一个块坐标的升降,加上一个代理功能和排除区域技术。 这样可以灵活地处理往往昂贵、量化或不可区分的困难客观功能。 解答器是全球趋同的, 很容易平行的。 我们展示了如何通过利用目标功能的特殊性( 如对称性)来加速优化优化。 此外, 在连续优化观点时, 我们讨论非最佳固定点与降低成本之间的平衡。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
【ICML2020】对比多视角表示学习
专知会员服务
52+阅读 · 2020年6月28日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
79+阅读 · 2020年6月11日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2021年4月8日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员