Recent technology development brings the booming of numerous new Demand-Driven Services (DDS) into urban lives, including ridesharing, on-demand delivery, express systems and warehousing. In DDS, a service loop is an elemental structure, including its service worker, the service providers and corresponding service targets. The service workers should transport either humans or parcels from the providers to the target locations. Various planning tasks within DDS can thus be classified into two individual stages: 1) Dispatching, which is to form service loops from demand/supply distributions, and 2)Routing, which is to decide specific serving orders within the constructed loops. Generating high-quality strategies in both stages is important to develop DDS but faces several challenging. Meanwhile, deep reinforcement learning (DRL) has been developed rapidly in recent years. It is a powerful tool to solve these problems since DRL can learn a parametric model without relying on too many problem-based assumptions and optimize long-term effect by learning sequential decisions. In this survey, we first define DDS, then highlight common applications and important decision/control problems within. For each problem, we comprehensively introduce the existing DRL solutions, and further summarize them in \textit{https://github.com/tsinghua-fib-lab/DDS\_Survey}. We also introduce open simulation environments for development and evaluation of DDS applications. Finally, we analyze remaining challenges and discuss further research opportunities in DRL solutions for DDS.


翻译:最近的技术发展使许多新的需求驱动服务(DDS)蓬勃发展到城市生活,包括搭乘、按需提供、快递系统和仓储。在DDS中,服务环是一个元素结构,包括服务工人、服务提供者和相应的服务目标。服务工人应当将人或包裹从提供者运送到目标地点。DDDS中的各种规划任务因此可以分为两个阶段:(1) 调度,即从需求/供应分配中形成服务循环,和(2) 运行,即在已建循环中决定具体服务订单。在两个阶段形成高质量的战略对于开发DDS十分重要,但面临若干挑战。与此同时,近年来迅速发展了深入的强化学习(DRL),这是解决这些问题的有力工具,因为DDL可以不依赖过多基于问题的假设,而通过学习开放性决定优化长期影响。在本次调查中,我们首先定义DDDDDS,然后强调共同应用和重要的决定/控制问题。关于每个问题,我们还在DDRDS/DRDRA中全面介绍现有的研究机会和DRDRDR应用。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员