Many partial differential equations in mathematical physics describe the evolution of a time-dependent vector field. Examples arise in compressible fluid dynamics, shape analysis, optimal transport and shallow water equations. The flow of such a vector field generates a diffeomorphism, which can be viewed as the Lagrangian variable corresponding to the Eulerian vector field. From both computational and theoretical perspectives, it is natural to seek finite-dimensional analogs of vector fields and diffeomorphisms, constructed in such a way that the underlying geometric and algebraic properties persist (in particular, the induced Lie--Poisson structure). Here, we develop such a geometric discretization of the group of diffeomorphisms on a two-dimensional K\"ahler manifold, with special emphasis on the sphere. Our approach builds on quantization theory, combined with complexification of Zeitlin's model for incompressible two-dimensional hydrodynamics. Thus, we extend Zeitlin's approach from the incompressible to the compressible case. We provide a numerical example and discuss potential applications of the new, geometric discretization.
翻译:暂无翻译