Federated Learning (FL) deals with learning a central model (i.e. the server) in privacy-constrained scenarios, where data are stored on multiple devices (i.e. the clients). The central model has no direct access to the data, but only to the updates of the parameters computed locally by each client. This raises a problem, known as statistical heterogeneity, because the clients may have different data distributions (i.e. domains). This is only partly alleviated by clustering the clients. Clustering may reduce heterogeneity by identifying the domains, but it deprives each cluster model of the data and supervision of others. Here we propose a novel Cluster-driven Graph Federated Learning (FedCG). In FedCG, clustering serves to address statistical heterogeneity, while Graph Convolutional Networks (GCNs) enable sharing knowledge across them. FedCG: i) identifies the domains via an FL-compliant clustering and instantiates domain-specific modules (residual branches) for each domain; ii) connects the domain-specific modules through a GCN at training to learn the interactions among domains and share knowledge; and iii) learns to cluster unsupervised via teacher-student classifier-training iterations and to address novel unseen test domains via their domain soft-assignment scores. Thanks to the unique interplay of GCN over clusters, FedCG achieves the state-of-the-art on multiple FL benchmarks.


翻译:联邦学习联合会(FL) 处理在受隐私限制的情景中学习中央模型(即服务器)的问题,该模型的数据储存在多种设备(即客户)上。中央模型无法直接访问数据,只能直接访问每个客户在当地计算参数的更新。这产生了一个问题,即统计差异性,因为客户可能拥有不同的数据分布(即域),这仅通过组合客户而部分缓解。组合通过确定域,可能减少不同类型(即服务器),但会剥夺其他数据和监督的每个组群模式。在这里,我们建议采用一个新的由群组驱动的联邦学习联合会(FedCGG) 。在FedCGGG中,分组有助于解决统计差异性,而图表革命网络(GCN)则有助于它们之间分享知识。 FedCGG:i) 通过符合FL组合的组合和即时效软化域模块(分支)确定每个域域域的域域;二) 通过GCN在培训中将特定域模块连接到通过GCN的域域际互动学习,通过G-C的域际学习它们之间的高级学习,并分享知识。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【Google-CMU】元伪标签的元学习,Meta Pseudo Labels
专知会员服务
31+阅读 · 2020年3月30日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
337+阅读 · 2020年1月27日
专知会员服务
112+阅读 · 2019年12月24日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员