Entanglement-assisted classical capacity is regarded as the natural quantum generalization of the classical capacity of a classical channel. We determine the exact strong converse exponent for entanglement-assisted classical communication. Our main contribution is the derivation of an upper bound for the strong converse exponent which is characterized by the sandwiched R{\'e}nyi divergence. It turns out that this upper bound coincides with the lower bound of Gupta and Wilde (Commun Math Phys 334:867--887, 2015). Thus, the strong converse exponent follows from the combination of these two bounds. Our result also implies that the exponential bound for the strong converse property of quantum-feedback-assisted classical communication, derived by Cooney, Mosonyi and Wilde (Commun Math Phys 344:797--829, 2016), is optimal. Hence, we have determined the exact strong converse exponent for this problem as well. This shows that additional feedback does not affect the strong converse exponent of entanglement-assisted classical communication. The above findings can be extended to deal with the transmission of quantum information in the same settings, yielding similar results.
翻译:连接协助的古典能力被视为古典频道古典能力的自然量子概括。 我们决定了纠缠辅助古典通信的精确强烈反反反推。 我们的主要贡献是强反反推的上线, 其特征是混杂的R'e}nyi差异。 事实证明, 这个上线与古典频道古典频道古典能力( Commun Math Phys 334: 867- 887, 2015) 的下线相吻合。 因此, 强烈反比来自这两个界限的结合。 我们的结果还表明, 由库尼、 Mosonyi 和 Wilde (Commun Math Phys 34: 797-829, 2016) 衍生的量子辅助古典通信的强烈反向属性的指数捆绑定是最佳的。 因此, 我们确定了这个问题的准确强烈反比重的直线。 额外的反馈并不影响这些互相缠绕的古典通信的强烈反推论。 我们的结果还意味着, 以上的调查结果可以扩展到类似的信息传输结果。