Accelerated gradient methods are the cornerstones of large-scale, data-driven optimization problems that arise naturally in machine learning and other fields concerning data analysis. We introduce a gradient-based optimization framework for achieving acceleration, based on the recently introduced notion of fixed-time stability of dynamical systems. The method presents itself as a generalization of simple gradient-based methods suitably scaled to achieve convergence to the optimizer in a fixed-time, independent of the initialization. We achieve this by first leveraging a continuous-time framework for designing fixed-time stable dynamical systems, and later providing a consistent discretization strategy, such that the equivalent discrete-time algorithm tracks the optimizer in a practically fixed number of iterations. We also provide a theoretical analysis of the convergence behavior of the proposed gradient flows, and their robustness to additive disturbances for a range of functions obeying strong convexity, strict convexity, and possibly nonconvexity but satisfying the Polyak-{\L}ojasiewicz inequality. We also show that the regret bound on the convergence rate is constant by virtue of the fixed-time convergence. The hyperparameters have intuitive interpretations and can be tuned to fit the requirements on the desired convergence rates. We validate the accelerated convergence properties of the proposed schemes on a range of numerical examples against the state-of-the-art optimization algorithms. Our work provides insights on developing novel optimization algorithms via discretization of continuous-time flows.


翻译:加速梯度方法是机械学习和其他数据分析领域自然产生的大规模、数据驱动优化问题的基石。我们根据最近推出的动态系统固定时间稳定性概念,采用基于梯度的优化框架来加速实现加速。该方法本身是简单的基于梯度的方法的概括化,其规模可以适当调整,以便在固定时间与优化一致,而不必与初始化无关。我们首先利用一个持续的时间框架来设计固定时间稳定的动态系统,然后提供一致的离散战略,例如等同的离散时间算法在几乎固定的迭代数中跟踪优化者。我们还从理论上分析了拟议梯度流的趋同行为,以及它们对一系列功能的累加性干扰的稳健性,这些功能服从强的趋同性、严格的趋同性、可能不相趋同性,但满足了Polyak-L}ojasiewicz的不平等性。我们还表明,由于固定时间趋同性趋同性,对趋同率的遗憾程度与实际固定时间趋同性相适应。超常数的梯度算法性调整了预期的趋同性趋同性趋同性比率。我们提出的压性平比性平级平级平级平级办法,使我们的轨平级平时平级平级平级平级平比的轨率性地解释。我们提出的平时平级平级平级平级平的轨数。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【Google】梯度下降,48页ppt
专知会员服务
79+阅读 · 2020年12月5日
商业数据分析,39页ppt
专知会员服务
157+阅读 · 2020年6月2日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
7+阅读 · 2020年6月29日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员