In this paper, we propose a method to recover multi-person 3D mesh from a single image. Existing methods follow a multi-stage detection-based pipeline, where the 3D mesh of each person is regressed from the cropped image patch. They have to suffer from the high complexity of the multi-stage process and the ambiguity of the image-level features. For example, it is hard for them to estimate multi-person 3D mesh from the inseparable crowded cases. Instead, in this paper, we present a novel bottom-up single-shot method, Center-based Human Mesh Recovery network (CenterHMR). The model is trained to simultaneously predict two maps, which represent the location of each human body center and the corresponding parameter vector of 3D human mesh at each center. This explicit center-based representation guarantees the pixel-level feature encoding. Besides, the 3D mesh result of each person is estimated from the features centered at the visible body parts, which improves the robustness under occlusion. CenterHMR surpasses previous methods on multi-person in-the-wild benchmark 3DPW and occlusion dataset 3DOH50K. Besides, CenterHMR has achieved a 2-nd place on ECCV 2020 3DPW Challenge. The code is released on https://github.com/Arthur151/CenterHMR.
翻译:在本文中, 我们提出从单一图像中恢复多人 3D 网格的方法 。 现有方法采用多阶段检测式管道( CenterHMR), 每个人的 3D 网格都从裁剪图像补丁中回归回来。 它们必须受到多阶段进程高度复杂性和图像级特征模糊性的影响。 例如, 他们很难从密不可分的拥挤案例中估算多人 3D 网格。 相反, 我们在本文件中展示了一个新的自下而上单发的单发方法, 即以中心为基础的人类网集恢复网络( CenterHMR)。 模型经过培训, 以同时预测两张地图, 代表每个人体中心的位置和每个中心3D 人表的对应参数矢量。 这种明确的中心代表方式保证了像素级特征的编码。 此外, 每个人的 3D网格结果是根据可见体部分的特征估算的, 从而改进了隐含下的坚固度。 中心HMR超越了以前在维代基准 3DPW 和 IMF 3H CREML 3H C 已实现 3HC 3HC 。 3DSet CDGSet 3DGSet 3HSet 。 3DSet 3DGSet 3DGSet 3D GD 2D CD GD CD CD CD CD 2D CD CD CD CD CD CD 2D 2D CD CD CD CD CD CD CD CDS 2DS 2DGDG 2DG 2D GD 2DG 2D 2D 2DG 2D GD 2D 2D 2D 2D 2D 2D 2 3D 2D 2D 2DG 2 3DG 2D GD 2 3D GDG 2 3D 2 3D GDG 2 3DS 2 3DG 2 3H 2 3D 2 3H 2D 2 3D 2 3D 2D 2 3D 2