Recommendation systems (RS) have become indispensable tools for web services to address information overload, thus enhancing user experiences and bolstering platforms' revenues. However, with their increasing ubiquity, security concerns have also emerged. As the public accessibility of RS, they are susceptible to specific malicious attacks where adversaries can manipulate user profiles, leading to biased recommendations. Recent research often integrates additional modules using generative models to craft these deceptive user profiles, ensuring them are imperceptible while causing the intended harm. Albeit their efficacy, these models face challenges of unstable training and the exploration-exploitation dilemma, which can lead to suboptimal results. In this paper, we pioneer to investigate the potential of diffusion models (DMs), for shilling attacks. Specifically, we propose a novel Target-oriented Diffusion Attack model (ToDA). It incorporates a pre-trained autoencoder that transforms user profiles into a high dimensional space, paired with a Latent Diffusion Attacker (LDA)-the core component of ToDA. LDA introduces noise into the profiles within this latent space, adeptly steering the approximation towards targeted items through cross-attention mechanisms. The global horizon, implemented by a bipartite graph, is involved in LDA and derived from the encoded user profile feature. This makes LDA possible to extend the generation outwards the on-processing user feature itself, and bridges the gap between diffused user features and target item features. Extensive experiments compared to several SOTA baselines demonstrate ToDA's effectiveness. Specific studies exploit the elaborative design of ToDA and underscore the potency of advanced generative models in such contexts.


翻译:暂无翻译

0
下载
关闭预览

相关内容

TODAES:ACM Transactions on Design Automation of Electronic Systems。 Explanation:电子系统设计自动化ACM汇刊。 Publisher:ACM。 SIT:http://dblp.uni-trier.de/db/journals/todaes/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员