One well established method of interactive image segmentation is the random walker algorithm. Considerable research on this family of segmentation methods has been continuously conducted in recent years with numerous applications. These methods are common in using a simple Gaussian weight function which depends on a parameter that strongly influences the segmentation performance. In this work we propose a general framework of deriving weight functions based on probabilistic modeling. This framework can be concretized to cope with virtually any well-defined noise model. It eliminates the critical parameter and thus avoids time-consuming parameter search. We derive the specific weight functions for common noise types and show their superior performance on synthetic data as well as different biomedical image data (MRI images from the NYU fastMRI dataset, larvae images acquired with the FIM technique). Our framework can also be used in multiple other applications, e.g., the graph cut algorithm and its extensions.
翻译:交互式图像分割法是一种公认的互动图象分割法。近年来,对这一类分解法进行了大量研究,使用多种应用。这些方法在使用简单的高斯加权函数时很常见,这种函数取决于对分解性性能有重大影响的参数。在这项工作中,我们提议了一个基于概率模型的推算权重函数总框架。这个框架可以具体化,以适应几乎所有定义明确的噪声模型。它消除了关键参数,从而避免了耗时的参数搜索。我们为常见的噪声类型提取了具体的权重函数,并展示了它们在合成数据以及不同的生物医学图像数据方面的优异性(MRI图像来自NYU快速MRI数据集,通过FIM技术获得的光电图像)。我们的框架也可以用于其他多种应用,例如图表剪切算法及其扩展。