This work extends the results of [Garde and Hyv\"onen, Math. Comp. 91:1925-1953] on series reversion for Calder\'on's problem to the case of realistic electrode measurements, with both the internal admittivity of the investigated body and the contact admittivity at the electrode-object interfaces treated as unknowns. The forward operator, sending the internal and contact admittivities to the linear electrode current-to-potential map, is first proven to be analytic. A reversion of the corresponding Taylor series yields a family of numerical methods of different orders for solving the inverse problem of electrical impedance tomography, with the possibility to employ different parametrizations for the unknown internal and boundary admittivities. The functionality and convergence of the methods is established only if the employed finite-dimensional parametrization of the unknowns allows the Fr\'echet derivative of the forward map to be injective, but we also heuristically extend the methods to more general settings by resorting to regularization motivated by Bayesian inversion. The performance of this regularized approach is tested via three-dimensional numerical examples based on simulated data. The effect of modeling errors is a focal point of the numerical studies.
翻译:这项工作扩展了[Garde 和 Hyv\'onen, Math. Comp. 91: 1925- 1953] 有关Calder\'on问题的系列反转到现实电极测量的系列问题的结果, 被调查身体的内部接受度和电极- 对象界面的接触接受度都被视为未知。 将内部和接触接受度送至直线电极当前至潜在地图的前端操作员首先被证明是分析性的。 对应的泰勒序列的重新转换产生一系列不同订单的数字方法, 以解决反电阻摄像学问题, 并有可能对未知的内部和边界接受度采用不同的对应性。 只有在使用未知的有限维对应度使远方图的Fr\'echetect 衍生物具有预感知性的情况下, 方法的功能和趋同性首先被证明是分析性的, 但我们的将方法扩大到更一般的环境, 采用由Bayesian 反向驱动的正规化方法, 并有可能对未知的内部和边界接受不同的内部和边界体识别模型进行模拟的模拟模拟模拟数据分析。 模拟的模型的模型的模拟模型的模拟的模拟模型的模拟模型的模拟模型的模拟模型的模拟模型的模拟性效果是模拟模型的模拟的模拟的模拟的模拟的模拟模型的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟模型的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟。