We study the problem of detecting the edge correlation between two random graphs with $n$ unlabeled nodes. This is formalized as a hypothesis testing problem, where under the null hypothesis, the two graphs are independently generated; under the alternative, the two graphs are edge-correlated under some latent node correspondence, but have the same marginal distributions as the null. For both Gaussian-weighted complete graphs and dense Erd\H{o}s-R\'enyi graphs (with edge probability $n^{-o(1)}$), we determine the sharp threshold at which the optimal testing error probability exhibits a phase transition from zero to one as $n\to \infty$. For sparse Erd\H{o}s-R\'enyi graphs with edge probability $n^{-\Omega(1)}$, we determine the threshold within a constant factor. The proof of the impossibility results is an application of the conditional second-moment method, where we bound the truncated second moment of the likelihood ratio by carefully conditioning on the typical behavior of the intersection graph (consisting of edges in both observed graphs) and taking into account the cycle structure of the induced random permutation on the edges. Notably, in the sparse regime, this is accomplished by leveraging the pseudoforest structure of subcritical Erd\H{o}s-R\'enyi graphs and a careful enumeration of subpseudoforests that can be assembled from short orbits of the edge permutation.


翻译:我们研究用美元未贴标签节点检测两个随机图表之间边缘相关性的问题。 这是正式确定为假设测试问题的假设值, 在无效假设下, 两个图表是独立生成的; 在替代情况下, 两个图表是在某些潜伏节点通信下与边缘焦点相关的, 但与无效值具有相同的边际分布。 对于高萨加权完整图表和密集的 Erd\H{o}s- R\'enyi 图形( 以边缘概率 $n ⁇ - o(1)} 美元), 我们确定最优测试误差概率从零到一的阶段转换为美元; 对于微薄的 Erd\H{o}s- R\\\ enyi 图形, 其边缘值与空虚值相同, 我们决定了一个不变因素中的临界值值值值。 测试结果的证明是使用有条件的第二次移动法, 我们通过仔细调整中间点的精确度概率第二时刻, 仔细调整交错点图的典型行为从零度轨道向一度轨道转换为美元; 对于精度图的精确度结构, 度, 度的精确度结构的精确度结构, 的精确度结构中, 的精确度, 的精确度, 的精确度结构的精确度结构, 的精确度, 。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
最新《图理论》笔记书,98页pdf
专知会员服务
75+阅读 · 2020年12月27日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月4日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月2日
Watermarking Graph Neural Networks by Random Graphs
Arxiv
0+阅读 · 2021年4月1日
Arxiv
0+阅读 · 2021年3月30日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
最新《图理论》笔记书,98页pdf
专知会员服务
75+阅读 · 2020年12月27日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月4日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员