Motivated by the success of Transformers in natural language processing (NLP) tasks, there emerge some attempts (e.g., ViT and DeiT) to apply Transformers to the vision domain. However, pure Transformer architectures often require a large amount of training data or extra supervision to obtain comparable performance with convolutional neural networks (CNNs). To overcome these limitations, we analyze the potential drawbacks when directly borrowing Transformer architectures from NLP. Then we propose a new \textbf{Convolution-enhanced image Transformer (CeiT)} which combines the advantages of CNNs in extracting low-level features, strengthening locality, and the advantages of Transformers in establishing long-range dependencies. Three modifications are made to the original Transformer: \textbf{1)} instead of the straightforward tokenization from raw input images, we design an \textbf{Image-to-Tokens (I2T)} module that extracts patches from generated low-level features; \textbf{2)} the feed-froward network in each encoder block is replaced with a \textbf{Locally-enhanced Feed-Forward (LeFF)} layer that promotes the correlation among neighboring tokens in the spatial dimension; \textbf{3)} a \textbf{Layer-wise Class token Attention (LCA)} is attached at the top of the Transformer that utilizes the multi-level representations. Experimental results on ImageNet and seven downstream tasks show the effectiveness and generalization ability of CeiT compared with previous Transformers and state-of-the-art CNNs, without requiring a large amount of training data and extra CNN teachers. Besides, CeiT models also demonstrate better convergence with $3\times$ fewer training iterations, which can reduce the training cost significantly\footnote{Code and models will be released upon acceptance.}.


翻译:受自然语言处理( NLP) 成功驱动的变换者 成功驱动 { 自然语言处理( NLP) 任务中, 出现了一些尝试( 例如 ViT 和 DeiT ) 将变换器应用到视觉域。 但是, 纯变换器结构往往需要大量的训练数据或额外的监督才能获得与 convolual 神经网络( CNN) 的可比性能。 为了克服这些限制, 我们直接从 NLP 直接借用变换器结构时, 我们分析潜在的缺点 。 然后我们提出一个新的 \ textb{ Convolution- enhancial 图像变换 ( CeifT), 将CNN在提取低级变现变现的变现器功能中的优点结合起来 。\ textb 变现器的变现式模型和变现的变现式的Flickrickral 将显示前变变式的变现器 。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
专知会员服务
123+阅读 · 2020年9月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
绝对干货!NLP预训练模型:从transformer到albert
新智元
13+阅读 · 2019年11月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
3+阅读 · 2018年3月29日
VIP会员
相关VIP内容
相关资讯
绝对干货!NLP预训练模型:从transformer到albert
新智元
13+阅读 · 2019年11月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员