A well known method to solve the Polynomial Eigenvalue Problem (PEP) is via linearization. That is, transforming the PEP into a generalized linear eigenvalue problem with the same spectral information and solving such linear problem with some of the eigenvalue algorithms available in the literature. Linearizations of matrix polynomials are usually defined using unimodular transformations. In this paper we establish a connection between the standard definition of linearization for matrix polynomials introduced by Gohberg, Lancaster and Rodman and the notion of polynomial system matrix introduced by Rosenbrock. This connection gives new techniques to show that a matrix pencil is a linearization of the corresponding matrix polynomial arising in a PEP.
翻译:解决多元值问题的一个众所周知的方法是线性化,即将PEP转化为具有相同光谱信息的普通线性半值问题,用文献中现有的部分电子值算法解决这种线性问题。矩阵多元值问题的线性化通常是使用单元变换来定义的。在本文中,我们确立了戈赫贝格、兰开斯特和罗德曼对矩阵多元值问题采用的标准线性定义与罗森布罗克引进的多元系统矩阵概念之间的联系。这一联系提供了新的技术,表明矩阵铅笔是PEP中产生的相应的矩阵多数值的线性化。