The main focus of this paper is the study of efficient multigrid methods for large linear system with a particular saddle-point structure. In particular, we propose a symbol based convergence analysis for problems that have a hidden block Toeplitz structure. Then, they can be investigated focusing on the properties of the associated generating function $\mathbf{f}$, which consequently is a matrix-valued function with dimension depending on the block of the problem. As numerical tests we focus on the matrix sequence stemming from the finite element approximation of the Stokes equation. We show the efficiency of the methods studying the hidden $9\times 9$ block structure of the obtained matrix sequence proposing an efficient algebraic multigrid method with convergence rate independent of the matrix size. Moreover, we present several numerical tests comparing the results with different known strategies.


翻译:本文件的主要焦点是研究具有特定马鞍结构的大型线性系统的有效多格方法,特别是,我们建议对具有隐藏块托普利茨结构的问题进行基于符号的趋同分析,然后对之进行调查,重点研究相关生成函数$\mathbf{f}$的特性,因此,这是一个矩阵值函数,其尺寸取决于问题区块。作为数字测试,我们集中研究来自斯托克斯方程式的有限元素近似值的矩阵序列。我们显示了研究获得的矩阵序列中隐藏的9\time 9$块结构的方法的效率,该结构提出了一种有效的代数多格方法,其趋同率独立于矩阵大小。此外,我们提出了若干数字测试,将结果与不同的已知战略进行比较。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
0+阅读 · 2021年9月19日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
0+阅读 · 2021年9月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员