Forecasting the short-term ridership among origin-destination pairs (OD matrix) of a metro system is crucial in real-time metro operation. However, this problem is notoriously difficult due to the high-dimensional, sparse, noisy, and skewed nature of OD matrices. This paper proposes a High-order Weighted Dynamic Mode Decomposition (HW-DMD) model for short-term metro OD matrices forecasting. DMD uses Singular Value Decomposition (SVD) to extract low-rank approximation from OD data, and a low-rank high-order vector autoregression model is established for forecasting. To address a practical issue that metro OD matrices cannot be observed in real-time, we use the boarding demand to replace the unavailable OD matrices. Particularly, we consider the time-evolving feature of metro systems and improve the forecast by exponentially reducing the weights for old data. Moreover, we develop a tailored online update algorithm for HW-DMD to update the model coefficients daily without storing historical data or retraining. Experiments on data from a large-scale metro system show the proposed HW-DMD is robust to the noisy and sparse data and significantly outperforms baseline models in forecasting both OD matrices and boarding flow. The online update algorithm also shows consistent accuracy over a long time when maintaining an HW-DMD model at low costs.
翻译:在实时地铁操作中,对地铁系统的原产地目的地对配对(OD矩阵)的短期搭乘进行预测至关重要。然而,由于OD矩阵的高度、稀少、吵闹和偏斜性质,这一问题臭名昭著地难以解决。本文建议采用高阶加权动态模式分解模型(HW-DMD)进行短期地铁OD矩阵预测。DMD使用Snualvalue Decomposition(SVD)从OD数据中提取低档次近似,并建立一个低档高档矢量自动回归模型进行预报。为了解决一个无法实时观测地铁矢量矩阵的实际问题,我们使用登机需求来取代无法获得的OD矩阵。特别是,我们考虑地铁系统的时间动态动态动态模式,通过大幅降低旧数据重量来改进预测。此外,我们为HW-DMD开发了定制的在线更新算法,以便每天更新模型,而不储存历史数据或再培训。从大规模地基流数据到不断的Mirmal-Mexal IMF数据库,在大规模的模型中,对数据进行试验。