We present definitions and properties of the fast massive unsupervised outlier detection (FastMUOD) indices, used for outlier detection (OD) in functional data. FastMUOD detects outliers by computing, for each curve, an amplitude, magnitude and shape index meant to target the corresponding types of outliers. Some methods adapting FastMUOD to outlier detection in multivariate functional data are then proposed. These include applying FastMUOD on the components of the multivariate data and using random projections. Moreover, these techniques are tested on various simulated and real multivariate functional datasets. Compared with the state of the art in multivariate functional OD, the use of random projections showed the most effective results with similar, and in some cases improved, OD performance.
翻译:我们提出了快速大规模无监督外向检测(FastMUOD)指数的定义和特性,用于功能数据中的外向检测(OD),快速MUOD通过计算每个曲线的振幅、大小和形状指数来检测外向值,目的是针对相应类型的外向值,然后提出了一些使快速MUOD适应多变量功能数据中的异向检测的方法,其中包括对多变量数据的组成部分应用快速MUOD,并使用随机预测。此外,这些技术还用各种模拟和实际的多变量功能数据集进行测试。与多变量功能OD的先进水平相比,随机预测的使用显示了最有效的结果,类似的结果,有时还改进了OD的性能。