Automating machine learning has achieved remarkable technological developments in recent years, and building an automated machine learning pipeline is now an essential task. The model ensemble is the technique of combining multiple models to get a better and more robust model. However, existing automated machine learning tends to be simplistic in handling the model ensemble, where the ensemble strategy is fixed, such as stacked generalization. There have been many techniques on different ensemble methods, especially ensemble selection, and the fixed ensemble strategy limits the upper limit of the model's performance. In this article, we present a novel framework for automated machine learning. Our framework incorporates advances in dynamic ensemble selection, and to our best knowledge, our approach is the first in the field of AutoML to search and optimize ensemble strategies. In the comparison experiments, our method outperforms the state-of-the-art automated machine learning frameworks with the same CPU time in 42 classification datasets from the OpenML platform. Ablation experiments on our framework validate the effectiveness of our proposed method.
翻译:近年来,自动化机器学习取得了显著的技术发展,而建立自动化机器学习管道现在是一项基本任务。模型组合是将多种模型结合起来以获得更好、更健全的模型的技术。然而,现有的自动化机器学习在处理混合模式方面往往简单化,因为混合战略是固定的,例如堆叠式的简单化。在不同的混合方法上有许多技术,特别是组合选择,固定组合战略限制了模型性能的上限。在本篇文章中,我们提出了一个自动化机器学习的新框架。我们的框架包含了动态组合选择的进展,就我们的最佳知识而言,我们的方法是第一个在AutomaML领域搜索和优化共同战略。在比较实验中,我们的方法超越了最先进的自动机器学习框架,而CPU在OpenML平台的42个分类数据集中也使用了同样的时间。在我们的框架中进行的实验证实了我们拟议方法的有效性。