We study the problem of efficiently recovering the matching between an unlabelled collection of $n$ points in $\mathbb{R}^d$ and a small random perturbation of those points. We consider a model where the initial points are i.i.d. standard Gaussian vectors, perturbed by adding i.i.d. Gaussian vectors with variance $\sigma^2$. In this setting, the maximum likelihood estimator (MLE) can be found in polynomial time as the solution of a linear assignment problem. We establish thresholds on $\sigma^2$ for the MLE to perfectly recover the planted matching (making no errors) and to strongly recover the planted matching (making $o(n)$ errors) both for $d$ constant and $d = d(n)$ growing arbitrarily. Between these two thresholds, we show that the MLE makes $n^{\delta + o(1)}$ errors for an explicit $\delta \in (0, 1)$. These results extend to the geometric setting a recent line of work on recovering matchings planted in random graphs with independently-weighted edges. Our proof techniques rely on careful analysis of the combinatorial structure of partial matchings in large, weakly dependent random graphs using the first and second moment methods.
翻译:我们研究如何有效地恢复未贴标签的美元收集点($mathbb{R ⁇ d$)与这些点的少量随机扰动之间的匹配问题。 我们考虑一种模式,将初始点(i.d.d.d)定为标准高斯矢量,通过添加i.i.d.d.d.高斯矢量(差价)和美元=(n)美元而扰动。在这个背景下,在多年度时间中,可以找到最大可能性估计点(MLE),作为线性分配问题的解决方案。我们为MLE设定了以$sigma_2$为单位的阈值,以便完全恢复配置匹配(没有错误),并大力恢复配置匹配点(为$(n)o)矢量矢量矢量矢量矢量矢量矢量矢量矢量矢量矢量矢量矢量矢量矢量。 在这两个阈值之间,我们显示MLE为美元=delta+ o(1)}第二位误差值是明确的 $delta\ in (0, 1) $。这些结果延伸到了MLE的几度线测量线, 以最近的一线定线, 以独立地设定了我们重新测量比重度对比模型结构的精度平比重方法的最近的工作线。