The Graph Convolutional Networks (GCNs) proposed by Kipf and Welling are effective models for semi-supervised learning, but facing the obstacle of over-smoothing, which will weaken the representation ability of GCNs. Recently some works are proposed to tackle with above limitation by randomly perturbing graph topology or feature matrix to generate data augmentations as input for training. However, these operations have to pay the price of information structure integrity breaking, and inevitably sacrifice information stochastically from original graph. In this paper, we introduce a novel graph entropy definition as an quantitative index to evaluate feature information diffusion among a graph. Under considerations of preserving graph entropy, we propose an effective strategy to generate perturbed training data using a stochastic mechanism but guaranteeing graph topology integrity and with only a small amount of graph entropy decaying. Extensive experiments have been conducted on real-world datasets and the results verify the effectiveness of our proposed method in improving semi-supervised node classification accuracy compared with a surge of baselines. Beyond that, our proposed approach significantly enhances the robustness and generalization ability of GCNs during the training process.


翻译:Kipf和Welling提出的“图变图网络”(GCNs)是半监督学习的有效模式,但面临过度移动的障碍,这将削弱GCN的代表性能力。最近,一些工程建议通过随机扰动图形表层学或特征矩阵来解决上述限制,以产生数据增强作为培训投入的数据。然而,这些行动必须支付信息结构完整性断裂的代价,并不可避免地牺牲原始图表中的信息。在本文中,我们引入了一个新的图表昆虫定义,作为定量指数,用以评价图中特征信息传播。在保存图层昆虫的考虑下,我们提议了一项有效的战略,利用一种随机扰动机制生成过动的培训数据,但保证图形表层学完整性,并且只有少量的图形酶衰变。在现实世界数据集上进行了广泛的实验,结果证实了我们所提议的方法在提高半超强的节点分类精确度和基线激增方面的有效性。除此之外,我们提议的办法大大加强了在培训过程中GCNs的稳健性和普遍化能力。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
PyTorch语义分割开源库semseg
极市平台
25+阅读 · 2019年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
PyTorch语义分割开源库semseg
极市平台
25+阅读 · 2019年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员