Injecting human knowledge is an effective way to accelerate reinforcement learning (RL). However, these methods are underexplored. This paper presents our discovery that an abstract forward model (Thought-game (TG)) combined with transfer learning is an effective way. We take StarCraft II as the study environment. With the help of a designed TG, the agent can learn a 99\% win-rate on a 64$\times$64 map against the Level-7 built-in AI, using only 1.08 hours in a single commercial machine. We also show that the TG method is not as restrictive as it was thought to be. It can work with roughly designed TGs, and can also be useful when the environment changes. Comparing with previous model-based RL, we show TG is more effective. We also present a TG hypothesis that gives the influence of fidelity levels of TG. For real games that have unequal state and action spaces, we proposed a novel XfrNet of which usefulness is validated while achieving a 90\% win-rate against the cheating Level-10 AI. We argue the TG method might shed light on further studies of efficient RL with human knowledge.
翻译:注入人类知识是加速强化学习的有效方法(RL) 。 然而,这些方法没有得到充分探讨。 本文展示了我们的发现, 抽象的前瞻性模型( TG) 与转移学习相结合是一种有效的方法。 我们把StarCraft II作为学习环境。 在设计TG的帮助下, 代理可以在64美元乘64美元平时的64美元平面图上学习99 ⁇ 赢率, 而AI仅使用一个商业机器中的1. 08小时。 我们还表明, TG 方法没有想象的那么严格。 它可以与设计大致的TG(TG)合作, 当环境变化时也可以有用。 与以前基于模型的RL相比, 我们展示TG 更有效。 我们还提出了一个TG 假设, 赋予TG 忠诚水平的影响。 对于存在不平等状态和行动空间的真正游戏, 我们提议了一个新型的 XfrNet, 其效用得到验证, 同时实现一个90 ⁇ 双向10 AI 。 我们认为TG 方法可以让人类进一步研究高效水平知识。