We propose a novel supervised multi-class/single-label classifier that maps training data onto a linearly separable latent space with a simplex-like geometry. This approach allows us to transform the classification problem into a well-defined regression problem. For its solution we can choose suitable distance metrics in feature space and regression models predicting latent space coordinates. A benchmark on various artificial and real-world data sets is used to demonstrate the calibration qualities and prediction performance of our classifier.
翻译:我们建议一个新的多级/单级标签监督新颖的多级/单标签分类器,用简单X类的几何方法将数据绘制成一个线性可分离的潜在空间。这个方法使我们能够将分类问题转化为一个定义明确的回归问题。为了解决这个问题,我们可以在地物空间和预测潜在空间坐标的回归模型中选择适当的距离测量器。使用各种人造和真实世界数据集的基准来显示我们分类的校准质量和预测性能。